
JPL Publication 88-32, Rev. 1, Vol. I

. - -L

(2_-.,

Concurrent Image Processing
Executive (CIPE)
Volume I: Design Overview

Meemong Lee
Steven L. Groom
Alan S. Mazer
Winifred I. Williams

p_Ur2__SSI;_ C c_-CUT!Vr (CTP-).

,j__['.;N '_V_RVIF_ { JDL} '" :"

\r_,Ld:4_ ;. :
CELL BgP

:3 3 / b I

N.?,L,- Z q 3z. B

March 15, 1990

IWkSA
National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

JPL Publication 88-32, Rev. 1, Vol. I

Concurrent Image Processing
Executive (CIPE)
Volume I: Design Overview

Meemong Lee
Steven L. Groom
Alan S. Mazer
Winifred I. Williams

March 15, 1990

NASA
National Aeronautics and

Space Administration

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

The research described in this publication was carried out by the Jet Propulsion

Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

ABSTRACT

This report describes the design and implementation of a Concurrent Image

Processing Executive (CIPE), which is intended to become the support system

software for a prototype high performance science analysis workstation. The

target machine for this software is a JPL/Caltech Mark IiIfp Hypercube hosted

by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the

design will accommodate other concurrent machines of similar architecture, i.e.,

local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE

system provides both a multimode user interface and an applications program-
mer interface, and has been designed around four loosely coupled modules: (1)

user interface, (2) host-resident executive, (3) hypercube-resident executive, and

(4) application functions. The loose coupling between modules allows

modification of a particular module without significantly affecting the other

modules in the system. In order to enhance hypercube memory utilization and

to allow expansion of image processing capabilities, a specialized program

management method, incremental loading, was devised. To minimize data

transfer between host and hypercube, a data management method which distri-

butes, redistributes, and tracks data set information was implemented. The data

management also allows data sharing among application programs. The CIPE

software architecture provides a flexible environment for scientific analysis of

complex remote sensing image data, such as planetary data and imaging spec-

trometry, utilizing state-of-the-art concurrent computation capabilities.

...

111

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Jerry Solomon for his support and
direction of this work. The rest of the authors would also like to thank Win-

ifred Williams for her selfless effort in editing this report for publication.

The research described in this report was carded out by the Observational Sys-

tems Division of the Jet Propulsion Laboratory, California Institute of Technol-

ogy, and was sponsored by the National Aeronautics and Space Administration

(NASA). Special thanks are due to the office of Space Science and Applica-

tions (Code EC) of NASA for their encouragement.

V

 'aL.LL..j.,-"_'_," r:;-',__:' t_'' ' N]ENI'IONALLY I_LANIIPi,¢EC_,_'_ . ,,_,.. L:'...ANI(NOT FILMED

TABLE OF CONTENTS

INTRODUCTION .. ix

1. OVERVIEW .. 1

1.1. What is an Executive? .. 1

1.2. Design Objectives ... 1

1.3. Design Implementation ... 2

2. USER INTERFACE .. 5

2.1. Command Line Interpreter ... 5

2.1.1. Input and Lexical Analysis ... 6

2.1.2. Parsing .. 7
2.1.3. Code Generation .. 11

2.2. Menu ... 12

2.3. Application Program Interface ... 14

3. HOST SYSTEM MONITOR .. 17

3.1. Data Management ... 17

3.1.1. Symbol Structure ... 17

3.1.2. Symbol Table Manipulation .. 18

3.2. File Management .. 19
3.2.1. Header File Structure ... 19

3.2.2. CIPE File I/O ... 20

3.3. Concurrent System Interface .. 21

3.3.1. Hypercube Command Protocol 22

3.3.2. Application Program Management 24

3.3.3. Hypercube Data Distribution ... 24

4. HYPERCUBE RESIDENT MONITOR ... 27

4.1. Interface to Host Executive .. 28

4.2. Data Management ... 29

4.2.1. Symbol Structure ... 29

4.2.2. Symbol Table ... 29
4.2.3. Data Distribution ... 30

4.2.4. Data Redistribution .. 30

5. CONCLUSION .. 33

APPENDIX

A. Yet Another Menu Manager (YAMM) Programmer's Guide A-1

vii

LIST OF FIGURES

1.1 Concurrent Image Processing System Configuration 3

1.2 CIPE Software Structure .. 4

2.1 Menu Structure ... 13

4.1 Data Decomposition ... 30

4.2 Data Redistribution Example ... 31
4.3 Data Redistribution Scheme ... 32

oQo

VIII

INTRODUCTION

The current and projected growth in volume and complexity of the National

Aeronautics and Space Administration (NASA) mission remote sensing image

data is placing a considerable strain on the computational resources available to

the science community for analyzing and interpreting this valuable source of

information. By the end of this century, given the Earth Observing System

(EOS) and other NASA space exploration missions, the wealth of data available

to scientists in a variety of disciplines will be truly astounding. In order to

address the problems associated with analyzing this data, a new generation of

computational resources and tools must be developed and made available to the

NASA science community. This task report describes work carded out during

FY88 and FY89 which addresses one aspect of this problem, i.e., the develop-

ment of user environments and tools for high-performance science analysis

workstations. This work has been carded out in the context of implementing a

Concurrent Image Processing and Analysis Testbed (CIPAT), which will form a

prototype high-performance workstation. The utilization of emerging con-

current processing technology, in particular multiple-instruction-multiple-data

(MIMD) architectures which provide large amounts of local memory, is a

natural approach to handling compute-intensive problems with large data sets.

This technology presents its own unique set of problems, however, particularly

with respect to system software design and interactive user environments. The

work described in this report provides one solution to these problems through

the implementation of a general executive software system, the Concurrent

Image Processing Executive (CIPE).

As the name implies, CIPE was designed for hardware systems which utilize

concurrent computational resources for the processing of image and other mul-

tidimensional data; more specifically, the concurrent computational resource is

assumed to be an attached processor which is connected to a host computer. In

this context, the host machine provides the usual broad range of operating sys-

tem services, file I/O, display device hardware, network connections, etc.

Although the executive described in this report could be extended to cover

commercial multiprocessor computers such as Alliant, Convex, Elxsi, Flex, etc.,

that was not a design objective. The hardware environment within which CIPE

was developed consists of a MASSCOMP 5600 dual-processor host machine,

an International Imaging Systems (12S) IVAS image display processor, and an

8-node JPL/Caltech Mark IIIfp hypercube. The host machine is currently

changed to a Sun-4 to accommodate much higher data transfer rates utilizing

new concurrent I/O capabilities. Numerous display devices (Sun consoles and

IVASes) are added to the CIPE environment employing a remote process con-

trol (RPC) protocol for accessing remotely connected devices.

CIPE was designed around four major software modules: (1) user interface, (2)

host system monitor, (3) hypercube monitor, and (4) application functions. A

major design objective was to provide a powerful and flexible user interface for

ix

efficient utilization of the system's considerable computational resources. Sys-

tem modularity provides relatively easy functional extensibility, both at the user

level and the applications programming level. CIPE provides a number of utili-

ties which greatly ease the application programmer's difficulties in dealing with

a new machine architecture, i.e., the hypercube topology. We believe that the

system described in this report provides a flexible framework within which to

begin building a powerful user-oriented computing environment for high-

performance science analysis workstations.

This report is intended to serve both as an overview of the CIPE design and

implementation philosophy. For more detailed information in usage of CIPE

functions and the CIPE programming environment, a programmer's guide

(Volume II of this report) and a user's guide (Volume III) are provided

separately. This report is organized in four sections. Section 1 describes the

design objectives of CIPE. Section 2 describes the two user interface modali-

ties of the command line interpreter and menu mode. Section 3 describes the

host system monitor functions with respect to generic operating system func-

tions and concurrent system interface functions. Finally, Section 4 describes

the hypercube monitor functions, including the interface mechanism to the host

system and CIPE management of data and application programs.

X

1. OVERVIEW

CIPE was designed and implemented by the Image Analysis Systems Group for

the purpose of utilizing various concurrent architectures in a high rate data pro-

cessing environment. Concurrent systems provide greatly enhanced computa-

tional power by integrating large numbers of processors into systems via vari-
ous interconnection topologies. However, they do present significant program-

ming difficulties due to their architectural complexities. In particular, utilization

of such systems for interactive image processing requires a unique kind of

software environment which shields users and programmers from architectural

complexities while offering the computational advantages of concurrent sys-

tems.

1.1. WHAT IS AN EXECUTIVE?

Though there is no written definition for an executive, in general, an executive
is software which resides on top of an operating system and provides common

resources to users and programmers within a well-defined application area. The

common goal of an interactive image processing environment in a concurrent

system configuration is the utilization of a concurrent architecture for faster

processing of image data, visual presentation, and real-time user interaction.
The shared resources include user interfacing, data manipulation, display, file

I/O, and interfacing to concurrent systems. Therefore, an executive approach

was chosen to provide a software environment (user and programmer) for con-

current image processing.

CIPE has distinctive characteristics as a concurrent system executive, as a high

rate data processing executive, and as an interactive image processing execu-
five. As a concurrent system executive, it provides a programming environment

which shields a programmer from architectural complexities while it utilizes the

maximum potential of a concurrent system. As a high rate data processing exe-

cutive, it provides a flexible file management scheme and efficient data manipu-

lation and representation mechanisms. As an interactive image processing exe-

cutive, it offers a friendly, flexible, and efficient user environment.

1.2. DESIGN OBJECTIVES

As CIPE is an executive serving three distinctive purposes, utilization of a con-

current system, interactive image processing, and high rate data processing, it

has three corresponding design objectives and one overall objective.

First, the design objective as a concurrent system executive was to utilize a

concurrent system to its full potential. The maximum concurrency of the system

for data processing was pursued via appropriate data and program management

schemes which utilize the architectural characteristics of a concurrent system

(interconnection topology, processing power, and memory system).

2 OVERVIEW SECTION 1

Second, the design objective as a high rate data processing executive was to

manage data efficiently so that its processing can be performed without waste-

ful file transactions or data traffic between the host and a concurrent system.

The main goal of the data management scheme was to overcome the data mani-

pulation difficulties in a concurrent system that has a localized memory and a
serious data transfer bottleneck.

Third, the design objective as an interactive image processing executive was to

provide an easy-to-use image processing environment which provides a user a

wider range of expressional tools and choices of interaction levels. The expres-

sional tools allow a user to carry out tasks efficiently. The multiple choices of

a user interaction level, according to experience level and application needs,

allow a user to be acquainted with CIPE easily while providing room to grow
with it.

Finally, the overall design objective of CIPE is to provide an architecture-

independent environment where neither a user nor a programmer needs to be

involved in the system-dependent details related to the file system, display dev-

ices, or concurrent systems. Such an environment is pursued by separating the

executive into device-dependent and independent modules and coupling them

with a set of generalized interface routines. The decoupling of the architecture

dependency from the functionalities allows CIPE to be easily upgraded to

future system configurations as well as to maintain the transportability of the
application programs.

1.3. DESIGN IMPLEMENTATION

The current implementation of CIPE uses the combination of a Sun-4 host com-

puter and a MARK IIIfp 8-node hypercube (Figure 1.1). CIPE consists of four

modules: user interface, host system monitor, hypercube monitor, and applica-

tion (a set of generic image processing functions). Each module is designed and

implemented to achieve the overall design objectives of CIPE.

As a user environment, CIPE provides a friendly user interface in two forms: a

command line interface and a menu interface. The command line interface pro-

vides a simple interpreted programming language allowing interactive function

definition and evaluation of algebraic expressions. The menu interface employs

a hierarchical screen-oriented menu system for executing CIPE commands.

The host system monitor handles overall system interactions and provides gen-

eric image processing executive functions. The system management involves

peripheral device handling, the concurrent system interface, and application pro-

gram execution. In order to develop an image processing executive for a virtual

concurrent system environment, system setup procedures, data management

schemes among multiple systems, and concurrent system interface methods

were designed and implemented. Also, a data representation method was dev-

ised to optimize the large volume data manipulation among file, host, and

SECTION 1.3 DESIGN IMPLEMENTATION 3

e.
t,,..

e-

nl
DI

nl
nl
nl

C
o

03
t4--

C
0

C)

E
03
¢I)

GO

o3
C

el)
G)

0

n

G)

E

C

Ib--

0
t-
O

0

LI-

4 OVERVIEW SECTION 1

concurrent systems.

Each concurrent system resident executive must implement unique architecture-

dependent data and program management methods for optimal utilization of the

architecture. The hypercube resident monitor allows CIPE to avoid data com-

munication bottlenecks by keeping active data resident in the hypercube and

minimizing application program space by downloading code as required to

operate on the data. In order for data to be shared among several application

programs with different data distribution requirements, an automatic data redis-
tribution method is devised.

The image processing function module is a non-resident component of CIPE,

since each function is dynamically loaded only for execution. The executive-

provided functions (partly implemented) include generic image processing func-

tions, systematic flight data processing, multi-spectral data processing, and a set

of data processing primitives for interactive algorithm development.

The overall relation among modules is displayed in Figure 1.2. The example

concurrent system resident executive in Figure 1.2 is a hypercube resident exe-

cutive. The hypercube resident software is developed employing the Crystalline

Operating System (CrOS) using the C Programming Language.

MENU CLI

USER INTERFACE

(_REMOTE DISPLAY

EVICE INTERFACE) I

FILE SYSTEMj

PPLICATION_

IBRARY ,,)

HOST MONITOR

DISPLAY

DATA
MANAGEMENT

APPLICATION
MANAGEMENT

HYPERCUBE MONITOF

DATA
MANAGEMENT

APPLICATION
MANAGEMENT

Figure 1.2 CIPE Software Structure

SECTION 2.0 USER INTERFACE 5

2. USER INTERFACE

The design philosophy behind the CIPE user environment is to provide the user

a choice of interfaces. Though numerous "user friendly" interfaces have been

developed, there is no single interface scheme that all users agree on; individual
users have different conceptions of "friendliness" just as they have different

levels of expertise and different processing needs.

Basically, there are three types of user interface modes: command line, menu,

and windowing. The command line interface (used by computer operating sys-

tems, for example) imposes a rigid syntax structure and usually demands com-

plete information about the operation to be performed when the command is
entered. It is especially useful in a batch-oriented environment where a set of

precomposed command lines can be utilized repeatedly, or when functions and

expressions need to be interactively defined and evaluated. The menu interface

offers a hierarchical organization and preformatted prompts for necessary infor-

mation which a user can easily follow in real time. Its usage is for interactive

data processing environments with limited amounts of user-provided informa-

tion. The windowing interface provides another dimension to user interaction

by offering a graphical expression. Its usage is for visually oriented data pro-

cessing environments where a simple graphical expression can replace a com-

plicated command line or menu input.

CIPE provides the first two types of user interface, allowing the user the advan-

tages of each. The command line interpreter (CLI) provides a simple inter-

preted programming language allowing interactive function definition and

evaluation of algebraic expressions. The menu interface employs a hierarchical

screen-oriented menu system. User input error-checking is performed prior to

execution to reduce the probability of execution error and to prevent wasteful

execution. In this section, the discussion of each user interface mode is

focused on describing CIPE's usage of each mode with respect to user interface

organization and functionality through descriptions and examples.

2.1. COMMAND LINE INTERPRETER

The first of the user interface approaches implemented in CIPE is the Com-

mand Line Interpreter (CLI). The CLI makes available the basic capabilities of

CIPE, including environment control, program execution, and the evaluation of

functions and expressions. It also provides for the definition of CLI-interpreted

functions and scripts, allows the creation of workspace collections of user-

defined procedures, and provides more terminal independence than the other

user interfaces. Interpreted functions may be expressed in terms of built-in

primitives, compiled code, or other interpreted functions. The command line

approach allows operations to be performed repetitively through looping and

simplifies interactive evaluation of complex expressions using built-in and
user-defined functions. Since most operating systems are command line based,

6 USER INTERFACE SECTION 2

the CLI approach also allows a user to escape CIPE execution temporarily and

run operating system utilities such as those used to list a directory or to edit a
file.

This section discusses the design and implementation of the CLI, which has

three parts: command line input and lexical analysis, parsing, and code genera-
tion. The execution of functions is discussed in the CIPE User's Guide

(Volume III). Commands are taken from the keyboard or workspace, separated

and unaiiased into tokens in the command language, and parsed; commands

taken from the keyboard may have been edited. The parser uses syntax-

directed translation to build a pseudo-code program, which is then executed.

The following subsections discuss each of these functions in detail.

2.1.1. Input and Lexical Analysis

The input and lexical analysis phases of command line interpretation are

straightforward, centered around the concept of input streams. An input stream

corresponds to a source of command input. As new streams are added, descrip-
tors for previous streams are pushed onto a stack until such time as the new

stream runs out of input. The first input stream in any session is the standard

input, by default, the keyboard. As a user typing at the keyboard loads a previ-
ously saved workspace, the workspace file becomes the current stream and the

descriptor for the previous stream is pushed onto the stack. Workspace execu-

tion continues until the workspace loads another workspace or ends, at which

time the stack is adjusted accordingly. Edited command lines are handled simi-

larly, written to a file which is then opened as a stream and afterwards dis-
carded.

Command line interpretation starts with initializations: the allocation of initial

buffer space, and the creation of an initial input stream descriptor. The

remainder of interpretation is then a loop in which input handling is simply

determining the current stream, managing pointers and status variables, provid-

ing for editing, and reading a line. If the user requests editing of a previous or

current command using CTRL E, the input code writes out what has been typed
so far, or if nothing, the last command, and allows the user to edit the com-

mand using a standard full screen editor. This approach was chosen over more

simple, line-based command editors both because of the ease with which a user

can access a favorite editor and because CIPE command lines, such as those

containing function definitions, are potentially so complex that a line editor

approach is very difficult to use. Once edited to the user's satisfaction, the

descriptor for the previous stream is temporarily pushed onto the stack, and

input is taken from a temporary file containing the user's edited command.

Implicit in the process of command input are management requirements such as

the monitoring of buffer space (which may be automatically increased if neces-

sary), the removal of unnecessary space and comments, and for edited com-

mand lines, feedback of the final command line to the user.

SECTION 2.1 COMMAND LINE INTERPRETER 7

Actual lexical analysis is done by the function, yylex, generated from a legal-

token specification by the Unix* utility lex. Supporting this lexical analysis is

a variety of functions within CLI for tracing, line continuation handling, input

buffer access, recognition of reserved words and their types, and error handling.

Line continuations are usually provided automatically. Whenever a user enters

a command line which is incomplete, either because some terminating delimiter

has not been entered (such as a for loop started but not finished with an end or

a function call with an incomplete argument list), or because the line ended

with a two-argument operator, the CLI prints a continuation prompt, properly

indented, to show that more input is expected. Alternatively, a user can indi-

cate that more is to come by ending an input line with a backslash(\).

Reserved words are recognized using a variety of lists stored within the lexical

analyzer. Because reserved words such as multiword system attributes may be

specified in several ways (with underscores between words of the attribute, or

spaces, and with component words abbreviated), their recognition requires some

local parsing to determine whether they are reserved words, legal variable

names or simply errors. In addition to system attributes, reserved words

include commands, command support words (e.g., step in for i=O to 10 step 5),

and boolean and keyword values (e.g., on). While error detection is largely

done by the parsing, alerting the user is a function of lexical analysis, largely

because the lexical analyzer has more information about the actual command

lines as entered than does the parser. On errors, the lexical analyzer either

prints the command line causing the error, together with an explicit error mes-

sage and a carat (') pointing to the location of the error within the line, or

displays a workspace name and the number of the line within the workspace

causing the error.

2.1.2. Parsing

The tokens taken from the input stream by the lexical analyzer are next fed into

the parser, which attempts to assemble the tokens into a legal form, while at the

same time generating pseudo-code for the eventual execution of the command.

The parser itself is generated by the Unix utility yacc from the CLI grammar

definition file parser.y.

The yacc language definition consists of two parts: productions and parse

actions. The productions are defined formally by the following grammar in
Backus-Naur Form:

cmd list _-- cmd list command

Icommand

command _-- simplecmd

* Unix is a registered trademark of AT&T Bell Laboratories.

8 USER INTERFACE SECTION 2

I cntl struct

simplecmd _-- execcmd
I! unix cmd

Ioutput-= expr

I func name (actual_args)
I func name

I quit

cntl struct _-- for var name = expr to expr scmd list end

If or var_name = expr to expr step expr scmd_list end

Iwhile expr scmdlist end

l if expr then scmd_list endif

l if expr then scmd_list else scmd_list endif

l if expr then scmd_list else if list else_list endif

exec cmd _ set entity attr to expr

Iset attr to expr

I turn bool entity attr
I turn bool attr

I functions

Isymbols
Itraces

I print expr_list
Ishow func name

define func_name (formal_args) cmd_list end
load ws name

save ws name
edit ws name

read var name from filename

write vat name to filename

menu

nomenu

quit

output _ var_name
Ivar name [index list]

scmd_list t-- scmd_list ; simple_cmd

I simplecmd

else if list _ else if list else if expr then scmd_list

l else if expr then scmd_list

else list _-- else scmd list

le

SECTION2.1 COMMANDLINEINTERPRETER 9

entity t-- cube I gapp I system

attr t-- dimension Inum_procs Itopology I priority I logging

Ilextrace Iparsetrace Icodegentrace

Iexectrace I symtabtrace Ifunctabtrace

formal_args _-- e
I vat name

m

I formal_args, var_name

ws name _ expr
B

filename _ expr

at loc _-- E

l at expr, expr

index list _-- index list, index

I index

actual_args _-- e

I exprlist

index _-- expr

l expr : expr

exprlist _ expr

Iexprlist, expr

expr _ expr op2 expr

Iopl expr
Ivat name

Ivar name [index list]

Ifunc name (actual_args)

I(expr)
Iconstant

constant single_value

I{ value list }

value_list _ valuelist, single_value

I single_value

single_value _ integer
I float

I string

I enum

10 USER INTERFACE SEC'TION 2

op2<---&& I I I & I I I ^ I < I <=

I == I != I >= I > I * I / I + I -

opl_- I ! I

A few formats and details are omitted here where the rules are generally agreed

upon, such as for the formation of floats. Variables are not explicidy typed;

types are determined at run-time and functions do type conversion as necessary.

Yacc's output code uses shift-reduce parsing with single-token lookahead to

reduce every input line to a valid command. As tokens are received from the

lexical analyzer and shifted onto a stack, the parser attempts to reduce (com-

bine) sequences of tokens appearing on the fight side of one of the listed pro-

ductions. When several tokens can be reduced to a higher-level element of the

grammar, called a non-terminal to distinguish it from a terminal or reserved

word in the command language, they are replaced on the stack by the non-

terminal, which is in turn compared against the fight side of the productions

above. Ultimately, the group of tokens forming the input line reduces, through

many intermediate steps, to a cmd_list. Note that a legal input line may actu-

ally have multiple commands according to this grammar. No command delim-

iter is necessary; the grammar is designed such that successive commands may

be expressed on the same line unambiguously.

In addition to the productions listed above, the yacc input definition contains

parse actions. Parse actions are invoked whenever a sequence of tokens or

non-terminals reduces to a higher-level non-terminal, and they represent most

of the code in the yacc input definition. They fulfill two functions: to assist in

parsing, and to create the pseudo-code which is the ultimate product of the

parser. For example, when an integer value is sent by the lexical analyzer, the

parser recognizes that and reduces it to the non-terminal single_value. The

parse action for the reduction is to print out a trace, if the user has requested

parse tracing, allocate storage and save the value in the symbol table, and then

associate the index of the value in the symbol table with the new non-terminal

on the parse stack. Similarly, the non-terminal single_value will eventually be
used along with other input in the formation of one of the non-terminals con-

stant or value list, depending on whether or not it was preceded by a brace ({).

If the single_value is a part of the non-terminal value_list, the parse action

combines the value represented by single_value with the other values in the

value list, associating with the new non-terminal this expanded list of values.

Ultimately, the instruction using this value will be generated by yet another

parse action looking at a correspondingly higher-level group of non-terminals.

These and similar parse actions are applied at every step in the parsing of the

grammar until a program has been created. Other parse actions handle such

things as intelligent error detection and recovery, table lookups and

SECTION 2.1 COMMAND LINE INTERPRETER 11

management, backpatching (changing previously created code based on new

and previously unavailable information), code segment management (described
in more detail in the next section), and the creation of temporary variables.

2.1.3. Code Generation

A large part of parser action work is in the generation of pseudo-code instruc-
tions for execution of the command. The code called by these actions forms

the third part of the CLI, code generation. As the idea of streams is fundamen-

tal to understanding command input and lexical analysis, so code segments are

central to code generation. A code segment is a data structure containing the

name of a user-defined function, a pointer to the compiled code, a symbol table

and function table, and a pointer to a parent code segment. One code segment

is set up by default when the user starts up CIPE. Commands typed at the key-

board are compiled and described by this code segment, including any func-

tions defined at the keyboard level and any symbols created interactively.

When a workspace is loaded, a descriptor is created for it, with the original

code segment as parent, and execution shifts over to the workspace. The use of

code segments allows easy grouping of symbols and subordinate functions in

the proper context, and allows CIPE to quickly find the correct data or function

when a specification is potentially ambiguous.

The code generation functions fall into two groups: code segment maintenance

and support, and instruction generation. Code segment maintenance routines

include code to create new code segments (as when executing a DEFINE com-

mand), to add instructions to the current code segment, and to return to a previ-

ous code segment. Support routines store and manage constants in the symbol

table, perform compile-time type conversions, disassemble instructions for

user-defined workspace and function listings, and create temporary variables.

Instruction generation routines take information grouped by the parser and

translate it into individual instructions. Most commands recognized by the

parser translate into a specific instruction which is generated by a corresponding

code generation routine. For example, the routine cipe_arith_op is called when

the parser gets a token group of the form constant + constant. It generates an

addition instruction, creating a temporary variable, if necessary. Similar code

generation routines create instructions for assignments, subscripting, function

calls, and the other language features. In the case of branching as part of a

looping construct, where all the available information for instruction generation

may not be available until the loop is completely parsed, parser actions direct

the routines to produce skeletal code which is then backpatched, or filled in as

the information becomes available. Code generation for the assignment instruc-

tion attempts to modify previous code to make the assignment instruction and

the resulting overhead unnecessary.

12 USERINTERFACE SECTION2

2.2. MENU

The menu interface of CIPE serves several purposes: self-orientation to CIPE's

organization, a simple environment for inexperienced users, interactive input

verification, and functional grouping of CIPE capabilities. The entire CIPE

functionality is accessible by flipping through menus using menu control keys,

allowing one to quickly grasp the organization and usage of individual CIPE

commands. Each activated command displays prompts for required user inputs

and help can be made available for each input field so that inexperienced users

can easily follow the procedure. The validity of input may also be checked in

real-time and proper error messages displayed so that users can correct input

before actual execution takes place. The hierarchical organization of the menus

allows grouping of related functions. This functional grouping enhances the

menu entry selection process, since a user can scope CIPE according to his/her

processing needs.

Menu mode is implemented using Yamm (Yet Another Menu Manager), a gen-

eral purpose menuing package. Design details of Yamm are included in

Appendix A and an implementation example is provided in the CIPE

Programmer's Guide. This section is devoted to describing the utilization of

the package in CIPE to provide a menuing user interface to serve the purposes

presented above.

Yamm employs three windows: a menu window, an application I/O and data

entry window, and a status window. The menu window displays the submenus
and functions available at the current level of the menu tree. The menu hierar-

chy is specifiable on a per-user basis using menu configuration files, allowing

individual users to customize the environments. The menu configuration is

structured in a multibranched tree fashion, where the leaf node is connected to

a corresponding routine name as shown in Figure 2.1.

Currently, accessible submenus and applications are selected either by number

or by using arrow keys to move to the desired selection. If a submenu is

selected, its set of menus and accessible functions replaces.those of the previ-

ous menu in the menu window. When the selected submenu entry is a leaf

node in the menu configuration, the corresponding function becomes activated.

The interaction between a user and the activated function takes place in the

application I/O and data entry window.

The application I/O and data entry window serves a dual purpose. During exe-

cution of user programs, it displays application output and system error mes-

sages. During application-requested data entry, the window displays a data

entry form for specification of a given command's inputs. A parameter may be

classified as required when a value must be given by a user, or defaulted. For

the parameters with default values, the default values are automatically

displayed and a user may accept or change them. Individual parameters may

also have help and parameter-specific error checking. For parameters with just

I ROOT MENU I

MB'4U ! ME_ I

I SUB MENU I

I
I I

I
I suBMENuI

MB_U

m
_b
d
©
:Z

Figure 2.1 Menu Structure _,,

14 USER INTERFACE SECTION 2

a fixed number of valid values, the key combination shown in the status win-

dow next to Next Value may be used to step through the possibilities. See

Appendix A for the complete set of Yamm capabilities.

The status window displays the name of the current menu and the keys used for

the available functions in context. For example, during parameter entry the

window shows keyboard mappings for Return to Menu, Help, End Data Entry,

etc. When waiting for a submenu or application selection, the menu status win-

dow shows mappings for such things as Previous Menu and Exit. Keyboard

mappings are determined automatically based on the type of terminal in use,

but may also be specified in the code by the programmer or in user-specific

menu configuration files.

2.3. APPLICATION PROGRAM INTERFACE

CIPE offers a set of resident functions which are always loaded into the system

when CIPE is activated. The resident functions include symbol manipulation

and utilities for display and system setup. Besides the system resident func-

tions, CIPE provides a large set of generic image processing functions includ-

ing various spatial/frequency filters, geometric transformations, restoration algo-

rithms, and algebraic data manipulation functions. These functions are supplied

to CIPE as application programs. The CIPE allows the application functions to

be added without requiring any modification to CIPE by employing a dynami-

caUy loaded function dictionary file. The function access can also be tailored

for an individual user via a user composed menu configuration file.

Function Dictionary - At a given time in the CIPE session, the available

function list is determined by the current function dictionary file. A user

may change the function list at any time by providing a new dictionary

file. The dictionary file contains a list of functions where each function is

described with respect to its function name, file name of the executable

code, and help message (calling procedure, etc.). When a function is

invoked by a user, CIPE searches the function name from the dictionary,

loads the corresponding executable file, and executes the code. When the

function name does not exist in the dictionary, the function name is

assumed to be an executable code file name in order to allow activation of

a function that has not been added to the dictionary file. When the execut-

able file does not exist in the system, or the user input parameters do not
match with the function call, the function call will be aborted.

Menu Configuration - The MENU mode of CIPE is controlled by a
menu configuration file which contains the hierarchical structure of func-

tions. A user may design his/her menu configuration file to enable a better

function access for a given task. A menu entry is either followed by a

sub-menu or a function. For a CIPE resident function, the resident func-

tion name is accompanied by a specific routine name while all of the

application functions are accompanied by a string called "appl" (ex.

SECTION 2.3 APPLICATION PROGRAM INTERFACE 15

function name/appl). When a menu entry accompanied by "appl" is

selected, CIPE performs the application function execution in the manner

described above using the menu entry name as a function name.

With these two external files, CIPE achieves a great flexibility to accommodate

a growing list of application functions and offers a user environment that can

be designed by a user for his/her individual need at a given time. The default

function dictionary file and menu configuration file are appended in the CIPE

user's guide (Volume III of this report). For more detailed information on

application programming, refer to the CIPE programmer's guide (Volume II of

this report).

SECTION3.0 HOSTSYSTEMMONITOR 17

3. HOST SYSTEM MONITOR

The CIPE system configuration includes a host system and one or more con-

current systems. Thus, the executive is divided into a host resident part and the

concurrent system resident part. The host resident part, referred to as a host

system monitor, handles overall system interactions and provides generic image

processing functions. The system management involves peripheral device han-

dling, the concurrent system interface, and application program execution.

In order to develop an image processing executive for a virtual concurrent sys-

tem environment, system setup procedures, data management schemes among

multiple systems, and concurrent system interface methods were designed and

implemented. A data representation method was also devised to optimize the

large volume data manipulation among file system, host system, and concurrent

systems. In this section, the host system monitor is described with respect to

its four functions: system setup, data management, file management, and con-

current system interface.

3.1. DATA MANAGEMENT

In an image processing environment, frequently, a sequence of functions is

applied to a data set to remove systematic noises and to enhance the data. It is

common practice in image processing to apply a function to a data set, save the
result to a file, retrieve the file for the next function, and so on until the data

set has been completely processed. Such a scenario is extremely time consum-

ing when there is more than one system involved for data processing and each

system requires downloading and uploading of data for each function.

In order to achieve efficient data processing with minimized file I/O and host-

concurrent system data traffic, a data sharing mechanism among application

functions is devised via a cross-referable data management scheme among the

host monitor, concurrent system monitor, and application functions. In a con-

ventional image processing system, a data set is stored in a file and a file name

is used as a reference to a data set. Since a data set may be distributed among

several systems in CIPE, a data set can not be referred to as a file. Therefore,

CIPE employs a symbol-oriented data management system, where a data set is

represented by a symbol structure.

3.1.1. Symbol structure

The symbol structure is designed so that a data set can be a subset of an exist-

ing file, of another symbol, or a set of assigned values. A three-dimensional

data set is allowed to incorporate scalar, vector, image, and multi-spectral data.

All data types (ex. char, int, float) are allowed and data can be stored on a disk

in the host memory, and/or in the concurrent system's memory. The current

symbol structure assumes that a concurrent system has multiple nodes and local

memory like a hypercube. The symbol structure contains the following four

PRECEDING ,',r.ocr,,._,.: _-..f,_"-_'([_OT FILMED rlll___lNRNll0f0_-k_ IK_l_

18 HOST SYSTEM MONITOR SECTION 3

types of information.

Data Location - Data location is indicated by a file name if a data set is

on a disk, a load map if it is in the concurrent system, and/or a memory

location if it is in the host system memory. When a function requests a

data set, the data in the nearest location will be applied. For example,

when an application function requests a data set to be distributed among

the hypcrcube nodes and the data set is in the hypercube nodes as well as

in the host memory, CIPE will redistribute the data in the hypercubc

accordingly instead of downloading the data from the host memory. More

detailed data distribution and redistribution schemes are discussed in sec-
tion 4.

Size field - The data size is described in three-dimensional terms: number

of lines, samples, and bands. When the data is a subset of an existing file,

starting locations are included for each dimension.

Data type - Data types are described as char, short, int, float, and double.

The combination of the data size and the data type allows the proper

memory allocation for each symbol.

Data Distribution - When data are distributed among nodes in a con-

current system, a map describing the distribution is composed and attached

to the symbol structure. The load map is discussed in more detail in the

CIPE programmer's guide (Volume II of this report).

3.1.2. Symbol Table Manipulation

The symbols are managed through a symbol table. The symbol table is a one-

dimensional array which contains pointers to the symbol structures. When a

symbol is created, its structure pointer is added to the symbol table; when a

symbol is deleted, its structure pointer is deleted from the symbol table and the

table is updated. The host monitor provides three symbol manipulation func-
tions.

Create Symbol - A symbol can be easily created using a

cipe_create_symbol function with its name, size (no. of lines, no. of sam-

pies, and no. of bands), and data type. The routine returns a pointer to the

symbol table entry of the created symbol, when there is a symbol with

the same name that exists in the symbol table, it will be overwritten. A

cipe_create_symbol_and_data function is also provided so that necessary

memory space is allocated for the symbol in case the data is to be created

in the host system.

Get Symbol - Information for a symbol can be retrieved using a

cipe_.getsymbol with a desired symbol name. The symbol table is

searched for a given symbol name and the corresponding pointer to the

symbol structure is returned. Using the pointer and macro definition of

SECTION 3.1 DATA MANAGEMENT 19

each field of the symbol structure (defined in symbol.h), an application

program can access the relevant symbol information.

Delete Symbol - A symbol may be deleted using cipe_delete_symbol with

a symbol name when the symbol is determined to be no longer in use. For

obvious reasons, a program may delete only the symbols that are created

by the program for temporary use. When CIPE receives the symbol dele-

tion command, it checks the data distribution status of the symbol and

deletes the symbol from all coprocessors that have any portion of the sym-

13ol prior to deleting the symbol from the host monitor.

3.2. FILE MANAGEMENT

The main purpose of file management is to isolate a programming environment

from the operating system and executive-specific file formats so that application

programs are unaffected by changes in the operating system and/or file formats.

The disadvantages of executive file management are the added layers of

indirection, non-standard (executive dependent) programming, and the require-

ment of learning an extra set of file I/O routine formats. The CIPE file

management tries to avoid these problems by maintaining standard C language

I/O function call formats as much as possible and minimizing the indirection.

More general purpose data file formats are also devised to be compatible with

other executive environments.

3.2.1. Header File Structure

First, CIPE employs a header file separated from a data file. Most executives

employ their own file structures using peculiar label formats which require a

label conversion/removal process for other programs to access the data. For

very large data files (50 Mbytes or more), the label conversion process becomes

not only time consuming, but also unfeasible due to limited disk space. Second,

the header file is designed to be an ascii file which can be edited and displayed

using standard edit and type operating system commands, e.g. vi and cat. The

ascii file format was chosen to minimize label retrieval/parse/conversion related

chores. Finally, the header consists of only systematic information including

size, type, and the starting location of data in the file. Since CIPE is designed

to demonstrate the computational power of concurrent systems in a generic

image processing environment, any specific operation related information was

not included.

Executive Indicator - The executive indicator field contains the name of

the executive for which the file was produced. For example, a file gen-

erated by CIPE will have "CIPE" as an executive indicator while a file

generated by the VICAR (MIPL/JPL) will have "VICAR" instead. The

indicator field is implemented so that the origin of a file can be preserved

as well, so that a proper label processor can be activated if the label

20 HOST SYSTEM MONITOR SECTION 3

information should be extracted.

Offset The offset field contains an integer which indicates where the

actual data starts in the data file. This field is implemented so that CIPE

can handle data sets with various types of label information. When CIPE

opens a file, it skips the offset number of bytes so that the file index

points to the beginning of the data area. The offset field is always zero

for the files that are generated by CIPE.

Data size - The data set size is described by the number of bands,

number of lines, and the number of samples in a line in order to incor-

porate three-dimensional data. A scalar value is described as a three-

dimensional data set with one band, one line, and one sample. Similarly, a

two-dimensional image is described as three-dimensional data with one
band. Three-dimensional data sets are stored in a band interleaved fashion

where a line from each band is concatenated to form a record in a file.

Data type - The type of a data set is expressed as byte, short, int, float,

or double. The data type information is used for determining data size,

for checking arithmetic operation compatibility, and for data conversion.

Others Besides the systematic and general description of a data set,

there can be data-set-related information which may or may not apply for

a given application. Such information is an optional part of the header.

Currently, the starting and ending wavelength fields are implemented in

the CIPE file header for multispectral data sets.

The following example header file shows that this is a CIPE header for a data

file "alsa" which contains a 256 byte label, for a three-dimensional multispec-

tral data set of size 200 by 28 by 32. The data type is byte type which ranges
between 0 and 255.

aisa.hdr

CIPE

offset = 256

number of lines = 200

number of samples = 28

number of bands = 32

type = byte

3.2.2. CIPE File I/O

The objective of CIPE's file I/O functions is to isolate the programming

environment from file structure specifics. In general, a programmer does not

have to perform explicit file I/O in CIPE since the data are managed by CIPE

SECTION3.2 FILEMANAGEMENT 21

as if they were variables in a program. However, if a programmer wishes to

perform an explicit file I/O which will read and create CIPE format files, the

following functions may be utilized. CIPE file manipulation consists of an

external level with which the programmer interfaces, and an internal level that

CIPE uses to resolve file structure-dependent procedures.

For the external file I/O, CIPE provides a file read function

(cipe read_from_file) which reads header file information into a symbol struc-
ture _md reads the data into the system memory. A user provides a symbol

name and file name along with the area of interest. This function activates the

CIPE internal file open function to open the header file and data file, and the

read function to read the data.

CIPE also provides a file write function (cipe_write_to_./ile) which writes data

associated with a given symbol into a file. This function gathers the data from

the hypercube when the data is distributed among the hypercube nodes and

composes a header structure. It activates the CIPE internal file create function
to create a header file and data file, and the CIPE internal write function to

write the data to the data file.

The CIPE internal file I/O consists of file open/create, header file read/write,

and data file read/write functions. The file create function (cipe_create) creates

a data file using a specified file name and also creates a header file. The

header file name is composed by concatenating ".hdr" to the data file name.

The file open function (cipe_open) opens a specified data file and the

corresponding header file. This function seeks the actual data starting position

in the data file using the offset information of the header file.

CIPE provides a header file read (cipe_getimageheader) function which

parses the header file information and constructs an image header structure, and

a header file write (cipe_.put_.image_header) function which writes the header
structure content out to the header file. The read/write/close functions call

operating system-provided functions.

3.3. CONCURRENT SYSTEM INTERFACE

CIPE is designed so that it can be applied as a testbed for various types of con-

current systems. The concurrent system testbed requires a unique programming

environment which allows a programmer to access routines that are shielded

from architectural complexities while each function is being executed by a

specific concurrent architecture using its full potential. Such a programming

environment was approached by implementing a concurrent system interface

mechanism between a host system and a concurrent system.

Currently, an 8-node JPL/Caltech Mark III hypercube system is implemented in

CIPE. A concurrent system is activated by a user command (set coprocessor to

CUBE) or a menu selection. The activated concurrent system dynamically alters

the CIPE execution path by loading the corresponding set of modules. A

22 HOST SYSTEM MONITOR SECTION 3

concurrent system may be activated at a given time and may be released and
reaccessed within a CIPE session.

The hypercube-related executive software is divided into two parts: the host

resident part, and the hypercube resident part. The host resident part of the
software interfaces with the rest of the executive via standard subroutine calls

and interacts with the hypercube resident part via a set of predefined com-

mands. The hypercube resident part is called the hypercube monitor which

waits for a command from the host process as a slave process. The host

resident part of the hypercube software is discussed here with respect to com-

mand protocol, data distribution, and application program execution.

3.3.1. Hypercube Command Protocol

The host system monitor and the hypercube monitor have a master and slave

relationship. The host monitor issues a command and the hypercube monitor

performs the command. The common program environment for generic image

processing applications was investigated to design a set of relevant commands

and their execution protocols. Within CIPE, a hypercube application program

is viewed as a routine that performs a specific data processing function on

existing data sets. CIPE passes the parameters that are composed by a pro-

grammer (see CIPE programmer's guide, Volume II of this report, for detail)

before executing the hypercube program. There are two types of parameters:

symbol and non-symbol, where a symbol parameter represents a dataset whose

name is specified by a user and a non-symbol parameter represents a variable
internal to the program.

A typical scenario that takes place in the host system monitor when a hyper-

cube application program is activated is illustrated below.

Pass the parameters to the hypercube monitor

(1) create the input symbols in hypercube,

(2) download the data of the input symbols according to the load maps,
(3) create the output symbols in the host,

(4) create the output symbols in the hypercube,

(5) pass the non-symbol parameter values to the hypercube.

Execute the function

(1) download the function module,

(2) execute the function,

(3) wait till execution is completed,

(4) readback the processed non-symbol parameter values.

A set of thirteen commands was designed and implemented in order for the

host monitor to control the hypercube monitor and to carry out the application

program execution following the above scenario. When the host monitor sends

a command to the hypercube monitor, the two monitors synchronously execute

SECTION 3.3 CONCURRENT SYSTEM INTERFACE 23

a set of pre-arranged program steps for the command. The command syntax

was designed in terms of the hypercube action.

Init - initialize the hypercube monitor. The hypercube monitor initializes

its symbol table and trace flags.

Set trace - set a debug trace flag. The hypercube monitor utilizes three

debug flags: cube_symbol_trace, cube_command_trace, and

cube data trace, to activate debug statements related to three different
n

functions: symbol table management, command execution, and data

distribution�redistribution.

Create_symbol - create a symbol in the hypercube symbol table. This

command is sent when the host resident program expects the data of an

output symbol to be generated by a hypercube resident module.

Deletesymbol - delete a symbol from the hypercube symbol table.

Read/oadmap - download a load map to each node of the hypercube.

This command must be sent prior to data distribution and/or prior to data

generation in order to let each node know the portion of data it is to

receive and/or to generate.

Read data - read data according to the corresponding load map.

Writeloadmap - upload a load map to the host. This command may be
issued in case the host monitor does not have the updated data distribution

load map.

Write data - upload data to the host. The hypercube monitor writes all of

the data of a given symbol name to the host. The host monitor then

assembles the data in a contiguous manner.

Redist data - redistribute data among nodes. When the data distribution is

requested by an application function different from the distribution

currently applied to the data, the host monitor sends this command with a

new data distribution type. The hypercube monitor redistributes data to the

specified data distribution type via inter-node data exchange.

Load module - load an application module in the hypercube monitor's
m

application program area.

Execute module - executes the loaded application module.

Load_parameters send the parameters for the loaded application

module. The parameters include input and output symbol names and input

and output variables.

24 HOSTSYSTEMMONITOR SECTION3

Retrieve_parameters - send the output variable values back to the host.

Exit - terminate the hypercube monitor program execution.

3.3.2. Application Program Management

As mentioned above, an application program for a hypercube coprocessor con-

sists of a host resident part and a hypercube resident part. The host resident

part is loaded as discussed in Section 2.3, employing a function dictionary file.

The host resident program then passes a corresponding hypercube resident
module name to be loaded to CIPE

(cipe_cube_execute_module("module_name"). CIPE reads the hypercube

module and requests the hypercube monitor to load the module in a pre-

determined area in the cube. The relation between a host resident part and the

hypercube resident part is similar to the relation between a main routine and a

subroutine. As a main routine may call several subroutines, a host resident part

may interact with several hypercube resident modules. The difference is that

only one of the hypercube resident modules may be loaded at a time. The load-

ing of an application program utilizes the incremental loading mechanism pro-

vided by Unix.

3.3.3. Hypercube Data Distribution

The image processing environment involves large volumes of data. Utilization

of a hypercube system with many nodes significantly enhances the computation

by processing the data concurrently. However, large data volume manipulation

is somewhat complicated since the local memory architecture does not allow

direct data sharing among nodes, and the data must be transferred via intercon-

necting channels.

In order to minimize the application programmer's effort in data manipulation,

and to allow a very flexible data distribution scheme, a load map structure is

composed where a programmer can specify an exact area in a given data set for
each node. A three-dimensional data set is assumed and a subarea is described

by starting and ending points in each dimension (line, sample, and band).

CIPE also provides a set of standard load maps for the frequently applied data

distribution schemes. The currently supported standard distribution types are a

broadcast distribution (BCASTDIST), a horizontal distribution

(HORIZ_DIST), a horizontal distribution with overlap (HORIZ_OVERLAP), a

vertical distribution (VERTDIST), a vertical distribution with overlap

(VERTOVERLAP), a grid distribution (GRID_DIST), and a grid distribution

(GRID_OVERLAP). An application programmer simply requests a proper dis-

tribution type, and the load map is automatically composed.

The data can be redistributed from one standard distribution to another standard

distribution without involving the host data download, except to BCAST DIST.

SECTION 3.3 CONCURRENT SYSTEM INTERFACE 25

Data distributions other than the standard distribution types are considered to be

customized data distributions (CUSTOM_DIST) and require a user-composed

load map for each node. The customized data distribution cannot take advan-

tage of hypercube internal data redistribution. The actual data distribution and
redistribution are discussed in more detail in Section 4.2.3. An application pro-

gram determines how the data should be distributed and calls a proper data dis-

tribution routine. Details are described in CIPE programmer's guide (Volume II

of this report).

SECTION 4.0 HYPERCUBE RESIDENT MONITOR 27

4. HYPERCUBE RESIDENT MONITOR

A JPL/Caltech MARKIIIfp hypercube is employed as a concurrent coprocessor

for CIPE. Each node is equipped with 4 Mbyte of memory, a Weitek floating

point processor board, a Motorola 68020 I/O processor, and a Motorola

68020/68881 data processor. The implementation details of CIPE with regard to

the hypercube are specific to the MARK III/CrOS hypercube, but the basic con-

cept associated with utilization of a multi-node interconnection topology, local-

ized memory system, and multiple programming capacity is shared among all

MIMD systems. Therefore, the monitor design can be easily generalized to

other MIMD systems.

The localized memory configuration of a hypercube system allows a very high

level of concurrency, since a large number of nodes can be connected without

creating a memory access botdeneck. However, three problems arise: distribu-

tion of data among multiple nodes is more complicated; data transfer between a

host system and a hypercube system performed through a single hypercube

node, node 0, creates a bottleneck; and the memory is shared by program and

data, one affecting the other for the limited memory space. All of these are

serious limitations for image processing applications where large data sets are

commonplace.

To aid in distributing data to the hypercube, CIPE supports a set of standard

data distributions and an easy-to-compose data load map structure for custom-

ized data distributions. These simplify the programming effort required in

hypercube data manipulation.

CIPE employs a global data management scheme to permit data sharing among

successive application programs which reduces the data transfer between the

host and the hypercube. Data can be redistributed from some distribution types

to others within the hypercube using the hypercube intereonnection topology.

Redistributing data within the cube reduces data traffic between the host and

the hypercube, by allowing data to be shared among successive application pro-

grams with different data distribution requirements. Near-term enhancements to

the hypercube include concurrent I/0 capabilities between the host and multiple

nodes of the hypercube. This enhancement should significantly reduce the data
transfer bottleneck.

A specialized program management method, incremental loading, is devised for

efficient hypercube memory utilization for program and data. When an entire

data set cannot be present in the hypercube at one time, another level of data

distribution difficulty is added, and the programming is much more compli-

cated. Moreover, only the activated function module is required to be present

in the hypercube node for data processing. Therefore, a trade-off has been

made between the program area and data area. By loading only an activated

function module to a preallocated program area, the most memory may be used

for data.

p_ECEr3IN_ PACE E_L/r.:NK NOT FILMED tll_l _.____ItlIENIIOIO/U Bl_m

28 HYPERCUBE RESIDENT MONITOR SECTION 4

The hypercube monitor performs these data and program management functions

upon the host system monitor's command. There are eleven commands includ-

ing seven data management related commands, three program management

related commands, and one termination command. In this section, the execu-
tion of these commands is examined in detail.

4.1. INTERFACE TO HOST EXECUTIVE

When a CIPE user initializes the hypercube as the coprocessor of choice, the

hypercube is reset and the hypercube monitor software is downloaded to the

cube. Each node of the hypercube has an identical copy of the monitor and

this monitor will remain resident in each node of the hypercube throughout the

use of the hypercube as a coprocessor. The host and hypercube interact as a

master and slave where the hypercube monitor waits to receive a command

from the host, acknowledges its receipt, executes it, and waits for the next com-
mand.

The monitor interfaces to the host executive providing for the execution of

eleven commands as mentioned in Section 3.4. The commands are for program

and data management including create_symbol and deletesymbol, for symbol

management, readload_map, read_data, write_loadmap, write_data, and

redist_data for data distribution, and load_module, execute_module, and

settrace for program management. For each received command, the hyper-

cube monitor and the host monitor follow predetermined communication steps
to receive/transfer necessary information for the command execution. An exe-

cution sequence is described below, using a create_symbol command as an

example.

Host Monitor Hypercube Monitor

1. Send symbol name 1. Receive a symbol name.

2. Wait for acknowledgment 2. Check if the symbol exists already.

If so, then send error

acknowledgment (NACK)

and go back to wait;

otherwise, send acknowledgment (ACK).

Create the symbol entry in the

symbol table.

3. If NACK abort the command 3. Receive the data size and allocate the

data area," else, send data size

SECTION 4.2 DATA MANAGEMENT 29

4.2. DATA MANAGEMENT

A data set is distributed among nodes in the hypercube for processing. Each

node may have the entire data set or a subarea of the data set according to the

processing need. The data set distribution information is composed by the host
monitor for each node and passed down to the hypercube monitor prior to

actual data transfer. A data set mentioned in this section refers to a portion of

data which resides in a given node.

Similar to the data management of the host monitor discussed in Section 3.2, a

data set in the hypercube monitor is represented as a symbol which is associ-

ated with an attribute structure describing its name, data type, and load map

(distribution scheme). A data set is accessed by its symbol name by application

programs. The hypercube monitor employs a symbol management scheme very
similar to that of the host monitor.

4.2.1. Symbol Structure

The symbol structure employed by the hypercube monitor receives the symbol

information through a create_symbol command for the name and data type, and

through a read_load_map command for the load type and data distribution

scheme. The symbol structure contains name, data type, and a load map field.

The load map field contains load type, location, and size field. The symbol

structure declaration can be found in Appendix B under elt_symbol.h.

Data type - An element within a symbol is described for its type as char,

short, int, float, and double. The combination of the data size and the data

type allows a proper memory allocation for each symbol.

Load type - Data distribution type is described as BCAST_DIST, etc.

(see Section 3.4 for the type definition). The load type information com-

bined with the load map allows the data redistribution within the hyper-

cube.

Load map - The load map describes the absolute data location of a sym-
bol in a node in reference to the whole data set in three-dimensional

terms. The starting location and its size for each dimension are expressed

in lines, samples, and bands.

Data - Data area is allocated separately from the symbol attribute struc-

ture, and its address is stored in the data location field of the symbol struc-

ture.

4.2.2. Symbol Table

The symbols are managed through a symbol table. The symbol table is a one-

dimensional array which contains the pointers to symbol structures. When a

symbol is created, its structure pointer is added to the symbol table. When a

30 HYPERCUBE RESIDENT MONITOR SECTION 4

symbol is deleted, its structure pointer is deleted from the symbol table and the

table is updated. The hypercube monitor provides three symbol manipulation

functions for hypercube module application programs to access the symbol
table identical to those of the host monitor described in section 3.1.2.

4.2.3. Data Distribution

Data is distributed through the use of the monitor's read data and write data

commands. Before data may be read, a symbol must exist and a load map

must have been read to know the data decomposition type and the specific load

map parameters. Data is read into the cube in one of five distribution types: a

BCASTDIST, which sends the entire data set to each node; a HORIZ DIST

(HORIZ_OVERLAP), which breaks the data into horizontal regions (witfi-over-

lap); a GRID DIST (GRID_OVERLAP), which breaks the data into a grid
(with overlap),a VERTDIST(VERTOVERLAP), which decomposes the data

into vertical regions (with overlap); or a CUSTOM_DIST, which permits the

decomposition of data in any manner that may be specified by six parameters

(starting line, sample, and band, and number of lines, samples, and bands).

Figure 4.1 illustrates data decomposition of above data distribution types in a

four node hypercube system.

0,1,2,3

0

1

2

3

0 1

2 3

0 __ 1 3

BCAST_DIST HORIZ_DIST
(HORIZ_OVERLAP)

GRID_DIST

(GRID_OVERLAP)

VERT_DIST
(VERT_OVERLAP)

Figure 4.1 Data Decomposition

4.2.4. Data Redistribution

The data distribution schemes discussed above shield a programmer from the

architectural complexities of the hypercube system. However, without a proper

data handling, they may easily degrade the system performance by wasteful

data traffic. In order to minimize redundant data traffic, CIPE devised an

automatic data redistribution scheme without involving a host. Once data is

SECTION 4.2 DATA MANAGEMENT 31

distributed to the hypercube as one of the standard data distribution types, the

data can be redistributed into another type via node-node data exchange.

Figure 4.2 illustrates the procedure involved in redistributing the data from

HORIZ DIST type to VERT OVERLAP type. First, CIPE shuffles data into

GRID DIST type by exchanging the right side half with the left side half of a

neighl_oring node. It repeats the process until each node has a vertical strip

(VERT_DIST). Then, it exchanges the overlapped portion with a neighboring
node to achieve VERT OVERLAP data distribution. When the neighboring

nodes are not connected physically, all of the nodes send out the overlapped

portion, and each node extracts a needed portion from the pool. Figure 4.3
illustrates overall data redistribution relationship. Such a data redistribution

scheme resolves the host-cube data transfer bottleneck and thus enhances the

computational efficiency of the system significantly.

x-_ xx-_ x_xx x xx',

1 [!iiii!!iiii ! ! i i i!iiiit

3 iiii:!:i_

HORIZ_DIST

0 2

css¢. ¢s¢s

¢¢¢¢. ¢¢¢s

......... 222.o2.-.-o

'' ':!: i:i:i:!:,,,.,,,,

1
_ A ^ ^ ,

^ ^ ^ ^
4^^^,

^ ^ ^ ^

s s s s

s s s /

s s s s

3

ssss

sss/

ssss

v

v

0

xs_s_s_s_s_sx

xs_s_s_s_s_s_

GRID_DIST

0 2

^^^ ^^_

"2_'22. _ v ".'2.'.'.'. _".'_.'.':. "E.'.'.'.'.

:::::: :!:i:i

1

. zx,'. _'x,', ,'_s xi,,,,,I

l
1 3

:-::::-2:" "-......--:-"......
..-.-.- - ...- - -.--.-..

VERT_OVERLAP VERT DIST

Figure 4.2 Data Redistribution Example (HORIS_DIST->VERT_OVERLAP)

32 HYPERCUBERESIDENTMONITOR SECTION4

Figure4.3 DataRedistributionScheme

SECTION 5.0 CONCLUSION 33

5. CONCLUSION

The previous four sections described the features and implementation details of

CIPE with respect to the user environment, programming environment, and

internal management of data and image processing functions. The user

environment emphasizes friendly access to provided functions, and the pro-

gramming environment provides system architecture-independent subroutine

layers for user interface, file I/O, hypercube utilization, and display device

manipulation. A symbol-oriented data management and an incremental program

loading mechanism are implemented for more efficient utilization of the con-

current system, and to overcome the system I/O bottleneck common in a high

rate data processing environment.

The CIPE development phase has been completed as of the fiscal year 1989. In

the future, CIPE will be utilized as an environment for various computationally

demanding data processing applications. Currently, CIPE provides over fifty

image processing functions. The future direction of CIPE will focus on enlarg-

ing the function list for more complete coverage of data processing functionali-

ties.

Appendix A - YET ANOTHER MENU MANAGER (YAMM) PROGRAMMER'S GUIDE

YAMM PROGRAMMER'S GUIDE A-3

1. INTRODUCTION

One of the most time-consuming yet necessary tasks of writing any piece

of interactive software is the development of a user-interface. Frequently, the

development of even a very simple interface takes up valuable time that might
be much better devoted to the design and implementation of the underlying

task. Yamm (Yet another menu-manager) is an application-independent menu-

ing package, designed to remove much of the difficulty and save much of the

time inherent in the implementation of front-ends for large software packages.

This appendix gives an overview of Yamm's structure and design philoso-

phy. Section 2 describes the menu configuration specification, a potentially

user-specific description of an application's menu structure(s) and terminal
interface. Section 3 describes the Yamm routines usable by an application.

The steps involved in implementing a program using Yamm are covered in

Section 4, and an example tying everything together follows in Section 5.

2. MENU CONFIGURATION

Applications running under the menu package consist of two parts: a

description of the menu configuration (sometimes including terminal charac-

teristics), which may be user-specific, and the body of application code, which

includes a call to start up the menu package as well as calls to menu package

interface routines.

The menu configuration is used at runtime to define the menu structure

and any non-standard terminal characteristics; it may be read in from a

programmer-specified file or included in the source. The example program in
Section 5 uses both methods: if the menu configuration file (menuconfig) exists,

the program uses it, otherwise it relies on the coded version.

Menu configuration specifications are composed of menu and terminal

definitions.

Menu definitions define specific menus within the menu tree. Each

definition contains the word MENU and a menu name, a series of prompt-name

pairs, and an END. The name in each pair may be either a reference to an

application function or the name of another menu defined within the menu

configuration.

Terminal definitions are optional and allow the user to specify non-

standard keyboard mappings and terminal capabilities. Each definition contains

the word TTY and a series of terminal types (e.g., vtlO0 Sun) followed by key

and capability definitions. Key definitions specify a generic key-name (e.g.,

up_arrow, help), what the user calls the key to be used (e.g., go up, CTRL H),

and the actual ASCII sequence generated by the key. For example:

PRECEDIiX:G PA_E BLANK NOT FILMED t)/i_ /_ I_TENTtoMAU-_{ BLA_

A--4 Appendix A

The redefinable keys arc:

hclp:CTRL H:^H

up_arrow help

down arrow root

right_arrow previous

left arrow exit

enddataentry func 0 func 4

endselect func 1 func 5

refresh func 2 func 6

toggle func 3 func 7

Terminal capability definitions give

corresponding key sequence, as in:

clear screen::\033H\033J

The redefinable terminal capabilities are:

the capability name and then the

ESC H ESC J - for VT52

move set inv video reset inv video clear screen
m

set underline reset underline down line clear col

scroll_region configure reconfigure set_gcs

reset_gcs upperleft_cor horiz._bar upper_right_cor

vert_bar lower_right_cor lowerleft_cor

Character sequences may be formed using the usual \octal-value (e.g., \033 for

escape) and inserting the actual control or escape characters into the definition.

The carat (^) may also be used to form easily-readable control characters. If

system-special characters such as CTRL-C or CTRL-S are used, their normal

functions are disabled inside the program.

Null padding may be specified for terminal capability definitions by preceding

the character sequence with the number of following nulls. For example, if the

definition for clear_screen above required a following padding of 10 nulls, the

sequence could be changed to IO\033H\O33J. Neither type of terminal

definition may be used in the menuconfig of a dynamically-created (nested)
menu structure.

Note that the formats for the move and scroll_region sequences are different

from those used by termcap. Specifically, the values must come in the reverse

of the default termcap order, and start at 1 rather than 0. This simplifies

integration of other terminals but may be confusing when compared with
termcap entries.

Comments and white space may be used freely within the menu

configuration commands; see the example for more information.

YAMM PROGRAMMER'SGUIDE A-5

3. APPLICATION ROUTINES

Here are the functions callable from application programs. Most of these

return -1 on error and 0 otherwise; see the example for information on actual

usage. The structures and definitions used here are defined in menuapp.h.

menu_start(config_name,config,func_table,localinit,localreinit,logfile)

char *config_name;

char *config[];

struct func_name_pair func_table[];

int (*localinit)(),(*localreinit)();

FILE *logfile;

invokes the menu interface. It must be called before any of the other

functions listed here. Config_name gives the name of the menu

configuration file; this may be NULL if the configuration is hardcoded

and no user override is to be permitted. Config gives a hardcoded

default configuration; this may be NULL if there will always be a

configuration file. Func_table is a list of function name-code pairings;

this is illustrated below. Localinit and localreinit point to functions

invoked automatically when the specified menu tree is entered and left,

respectively. Either or both of these may be NULL, but if they are

used, should return -1 on error and 0 otherwise. If session logging is

desired, logdile should contain a file pointer to an open file. Otherwise it

should be NULL. If logging is used, closing the file is left to the appli-

cation.

getpar(params,num__params,errorcode,help_code)

struct param *params;

int num_params;

int (*error_code)(),(*help_code)();

requests parameter values from the user using a data-entry screen.

Params points to a series of parameter definition structures,

num_params contains the number of parameters defined, error_code

points to a function able to detect errors or is NOECHK if none, and

help_code points to a function which prints parameter information for

the user on request or is NOHELP if none.

Parameter definition is done using def(), which is described below.

The programmer-supplied error code receives three parameters: a pointer

to the parameter definition structures, the number of the parameter to

check, and the value supplied, an int-double-char * union. (Booleans

are treated as integers for purposes of error checking.) Error checking

functions typically use unspecified(), new_value(), and unspecify(),

A-6 Appendix A

described below, to detect and correct errors. The function must return

-1 if the parameter value is unacceptable, and 0 otherwise.

Help code receives two parameters: a pointer to the parameter definition

structures, and the number of the parameter in question. One additional

special case is also provided for. On entry into getpar(), Yamm calls

the help routine specifying parameter number -1 to enable output of any

initial help or welcome message. This is illustrated in the example.

def(params,param_num,prompt,type,value__ptr,...)

struct param *params;

int param_num;

char *prompt;

int type;

unsigned char *value__ptr;

defines parameters on the data-entry screen. The first five parameters

are required, in the order shown; subsequent parameters may come in

any order and are optional, with appropriate defaults.

params is the name of a block of storage reserved for parame-

ters, as in struct param params[5]; to reserve space for

five parameters,

param_num is the number of the parameter being defined, start-

ing with 0,

prompt is a pointer to a short textual description of the value

which will be used as a prompt string,

type is the parameter type, INT, FLOAT, DOUBLE, STRING, or

BOOL (YES/NO), and

value..ptr is a memory location to receive the specified value(s).

In addition, a variety of parameters may be defined by specifying a key-

word followed by a comma and the relevant value(s):

INCR precedes an increment in bytes from value._ptr to use when

multiple values are specified - the default is parameter-

type dependent: 4 for INT and FLOAT, 8 for DOUBLE,

0 for STRING, and 4 for BOOL,

WID precedes the field width in columns needed to specify the

value - the default is parameter-type dependent: 6 for

YAMM PROGRAMMER'S GUIDE A-7

INT, 8 for FLOAT andDOUBLE, 20 for STRING, and 3
for BOOL,

COUNT precedes a pointer to an integer variable which will

receive the number of values specified - the default is to

not supply a count,

LINE precedes the line location (where 0 is top of window) of

the prompt - the default is 0,

COL precedes the column location of the prompt (where 0 is the

left edge) - the default is 0,

DUP precedes the number of values expected, or the negative of
the maximum number of values if the number is variable

- the default is 1,

DEFAULT indicates that the area referenced by the value__ptr

parameter contains default values which should be

displayed to the user - the default is "no default,"

GROUP precedes the group number (greater than or equal to

zero) of the parameter; if the user specifies a value for

any parameter within a group, all parameters must be

specified. - the default is "no group,"

REQ indicates that a value for the parameter is required - the

default is "not required,"

ENUM precedes two values, a number, and a pointer to that

many values, from among which the user must choose in

valuing the parameter, when the values are STRINGs (for

STRING-type parameters), the pointer is to a list of

pointers to these values, i.e., the list is defined: static char

*legal_values[] = {"valuel","value2",... };

ENTRYLINE precedes the line number (starting with 0) of the

first data-entry blank for this parameter - the default is to

use the line number of the prompt, except when multiple

data items are grouped together in a table format, in
which case the default is the number of the line below the

prompt,

ENTRYCOL precedes the column number (starting with 0) of the

first data-entry blank for this parameter - the default is

that column to the right of the prompt, except when mul-

tiple data items are grouped together in a table format, in

A-8 Appendix A

which casethe defaultis the columnnumbersuchthat the
prompt is centeredover thecolumn, and

END functions as an end-of-definition keyword and is required.

See the example for numerous parameter definitions.

unspecified(param)

int param;

returns true if no value has been specified by the user for parameter

param. This is most useful in the application-supplied error-checking

routine, where it can be used to make sure that a specified value does

not conflict with other related parameter values. This is typically used

with new_value() and unspecify() below.

new_valueqoarams,entry)

struct param *params;

int entry;

notifies the menu package that the value of the parameter numbered by

entry has been changed, usually because of a change in the value of a

related parameter.

unspecify(param)

int param;

removes the value of the specified parameter. This is usually only use-

ful inside error-checking routines, when a newly specified value is

incompatible with the value of another parameter and the latter must be
removed.

create_new_subtree(config_name,config,func_table,localinit,localreinit)

char *config_name;

char *config[];

struct func_name_pair func_table[];

int (*localinit)(),(*localreinit)();

dynamically creates a supplemental menu tree. The arguments are simi-

lar to the arguments for menu_start() above. The code pointed to by

localinit will be executed immediately, and if executed without error

(i.e., code returns O) then the user will be placed at the root of the new

menu tree. The function pointed to by localreinit is run on exit.

YAMM PROGRAMMER'SGUIDE A-9

Recursionis permissiblewith care,but the useof static variables should

be avoided.

The

Yamm:

4. TO IMPLEMENT A PROGRAM USING YAMM

following steps are sufficient to implement most programs using

° Determine where the menu configuration file, if any, will be kept, and if

desired, create a default configuration. Next, declare the functions which

will be called through the menus and assign to each menu-callable func-

tion a name. Write any application-specific initialization and reinitializa-

tion code. If logging is desired, fopen a file to contain the log. Finally,

write the call to menu_start(), using the data structures above as parame-

ters.

Example:

char *config._name = "./menuconfig";

char *config[] = NULL;

int function 1(),function2(),function3();

struct func_name__pair funcs[]={

{function 1,"func 1" },

{ function2,"func2" },

{ function3,"func3" },

{ 0,"/keep last" },

};

my_init() { /* application init code here */ }

my_reinit() { /* reinit code here */}

main() { menu_start(config_name,config,funcs,myinit,myreinit,NULL); }

. Create a menu configuration file. An example for the above function table

might be:

MENU mainmenu

DoFuncl/funcl

OtherFuncs/submenu

END

DoFuncl is the prompt; if chosen, calls funcl.

MENU submenu

A-IO Appendix A

DoFunc2/func2
DoFunc3/func3
END

func2andfunc3 mustbe associatedwith a
function usinga function tableasabove.

. In each application routine called by the menus, define parameters using

deft), and write chk_ and help_ routines. (You may want to leave writing

these routines until the application runs correctly. Use NOECHK and

NOHELP in getpar() calls meanwhile.)

. Compile the application code, linking with the menu library and

libtermcap.a. For example,

cc mycode.c -o mycode -lyamm -ltermcap

The resulting executable should display the menus as configured in your

configuration file and allow you to execute the application functions.

Once everything is working, you may want to change config_name and

keep the file in a different place or keep the file contents exclusively in
the code.

5. AN EXAMPLE

This section contains a detailed step-by-step implementation of a program

using the menu package.

1. First create menuconfig:

This is the menu configuration file. Each menu consists of MENU with

the menu name, a number of menu entries, and an END; a menu entry is

made up of the text to display for the menu selection and the

function or submenu name, as appropriate. Terminal-specific

sequences and keystroke-function mappings start with the TTY keyword

and end with END. See the programmer documentation for more

specifics. Comments should be prefaced with a #; all such text is

ignored. Indentation may be used to illustrate menu structure. This

text may also be put into the code. SCCS yamm__prog_guide 4.22 - 7/12/88

MENU mainmenu

Info/information

Two Legs/twolegs

Four Legs/fourlegs
END

function

submenu

submenu

YAMM PROGRAMMER'S GUIDE A-11

o

MENU twolegs
Cockatiel/bird

Parakeet/bird

Pigeon/bird
END

MENU fourlegs

Alsatian/dog

Collie/dog

German Shepherd/dog

END

Add in the call to menustart(), defining the menu config filename and

menu config, function table, local (re)initialization routines, and logging

file pointer. Make sure you include menuapp.h where necessary. Compile

the code, linking with the menu (-lyamm) library and libtermcap.a (-

ltermcap).

Here is the code from the demo program contained in demo.c:

#ifndef lint

static char sccsid[]="@(#)yamm_.prog_guide

#endif lint

4.22 7/12/88";

#include <ctype.h>
#include <stdio.h>

#include <strings.h>

#include "menuapp.h"

int information0,dog0,bird0;

char *config_name = "./menuconfig";

char *config[] = {
"MENU mainmenu","Information/information","Two Legs/twolegs",

"Four Legs/fourlegs","END",

"MENU twolegs","Cockatiel/bird"," Parakeet/bird","Pigeon/bird","END",
,1 9, • 11 ,1 • 11 ,, ,, |l |1

"MENU fourlegs , Alsatian/dog , Collie/dog , German Shepherd/dog , END ,

"/keep last"

};

struct func_name_pair functable[]={

{information,"information" },

{dog,"dog" },

{bird,"bird" },

{O,"/keep last" },

};

A- 12 Appendix A

main()

{
FILE *logiile;

logfile = fopen("demo.log","w");

(void)menu_start(config_name,config,func_table,(int (*)())NULL,

(int (*)())NULL,logfile);

(void)fclose(logfile);

}

information()

{
(void)prinff("This is the Pets pet registry program. ");

(void)prinff("Since this is for ");

(void)prinff("menu system demonstration only, no information is ");

(void)prinff("actually saved. You are now at the top of a ");

(void)prinff("short menu tree. By selecting menu entries ");

(void)prinff("(use the help key for more info) you can ");

(void)prinff("descend the tree in a manner compatible with your ");

(void)prinff("particular animal. ");

(void)prinff("When you've reached the bottom of ");

(void)prinff("the menu tree, the function selected will display a ");

(void)prinff("parameter ");

(void)prinff("entry screen. Feel free to move about the screen ");

(void)prinff("(use the help key for specifics) ");

(void)prinff("and fill in values. If the program erases something ");

(void)prinff("immediately after you've typed it, the input is ");

(void)prinff("illegal. ");

(void)prinff("Type the end-data-entry key ");

(void)prinff("when you're done entering parameter values. Note that ");

(void)prinff("the program may refuse to leave if some parameter ");

(void)prinff("value is required and unspecified. ");

(void)prinff("When you've reached the bottom of ");

(void)prinff("the menu tree, the function selected will display a ");

(void)prinff("parameter ");

(void)prinff("entry screen. Feel free to move about the screen ");

(void)prinff("(use the help key for specifics) ");

(void)prinff("and fill in values. If the program erases something ");

(void)prinff("immediately after you've typed it, the input is ");

(void)prinff("illegal. ");

(void)prinff("Type the end-data-entry key ");

(void)prinff("when you're done entering parameter values. Note that ");

(void)printf("the program may refuse to leave if some parameter ");

(void)prinff("value is required and unspecified. ");

_ ..

This function demonstrates the basic structure. Note that some values

YAMM PROGRAMMER'SGUIDE A-13

are statics. These are initialized to default values the first time, and

then when this function is called in the future, the last values used are

the defaults. Pet's name goes into name (up to 20 characters), and is

required; there is also a default. Foods takes up to 5 values, stored

starting at location foods and every 20 bytes thereafter, the number of
foods selected is returned in food count. Eye color is simply a string,

stored in eyes. The next two are boolean (YES or NO); note that booleans

should always be initialized. The weights parameter illustrates how to

request input of a matrix (in this case, a weights matrix for your dog).

Note the use of the GROUP keyword (to enable table formation); this is

somewhat awkward but very simple and flexible. The getpar request

displays the menu and returns with the values, which in this example, are

ignored.
.. *f

dog()

{
int chk_dog0,help_dog0,food_count;
char name[25],foods[20*5];

static double size[2];

static char eyes[20];

static int license---O,plays=0,first_fime=l;

static float wgts[9];

struct param params[9];

(void) strcpy(name,"Rover");

if (firsttime) {

(void)strcpy(eyes,"brown");

first time--0;
m

}
(void)def(params,0,"Pet' s name",STRING,name,WID,20,LINE, 1 ,DEFAULT,REQ,

END);

(void)def(params, 1,"Favorite food(s)",STRING,foods,WlD, 15,INCR,20,

COUNT,&foodcount, LINE, 1,COL,40,DUP,-5,END);

(void)def(params,2,"Eye color",STRING,eyes,WID, 10,LINE,3,DEFAULT,REQ,

END);

(void)def(params,3,"Licensed?",BOOL,&license,LINE,5,DEFAULT,END);

(void)def(params,4,"Likes to chase cars?",BOOL,&plays,LINE,7,DEFAULT,

END);
(void)def(params,5,"Ht, Length (fractional) ?",DOUBLE,size,

WID, 10,LINE,9,DUP,2,REQ,END);

(void)def(params,6,"Weights",FLOAT,wgts,INCR,sizeof(float)*3,LINE,7,

COL,50,DUP,3,GROUP,0,ENTRYLINE,8,ENTRYCOL,40,END);

(void)def(params,7,"Weights",FLOAT,wgts+ 1,INCR,sizeof(float)* 3,LINE,7,

COL,50,DUP,3,GROUP,0,ENTRYLINE,8,ENTRYCOL,50,END);

(void)def(params,8,"Weights",FLOAT,wgts+2,INCR,sizeof(float)* 3,LINE,7,
COL,50,DUP,3,GROUP,0,ENTRYLINE,8,ENTRYCOL,60,END);

if (getpar(params,9,chkdog,helpdog) == - 1) return;

/* continue with rest of program here - there isn't any in these examples */

A-14 Appendix A

(void)printf("%f %f0,size[0],size[1]);

_ ..

This is the error-checking routine for dog() above, which is very

straightforward. Number is the number of the parameter, and value is the

value specified (a union of three differently typed variables). If this

returns a non-zero value, getpar will erase what the user typed, indicating

that the input was erroneous.

.. _¢/

/*ARGSUSED*/

chkdog(params,number,value)

struct param *params;

int number;,

union {int i; double f; char *s;} value;

{
int error,

switch (number) {

case 0: error = alphawhite(value.s); break;

case 1: error = alphawhite(value.s); break;
case 2:

if ((error=color(value.s))!=0) {

(void)printf("Unknown color. Use blue, gray, green ");

(void)printf("or brown.");

}
break;

default: error = 0; break;

}
return(error);

This is the help routine for the dog() function above. When the user is

entering parameter values and presses the help key, getpar passes the

number of the parameter to this routine which prints the information

desired. Also, the help function is called by getpar immediately on startup

with a parameter value of -1 in case application has some specific prompt
for user.

.. 3Jt_

/*ARGSUSED*/

help_dog(params,number)

struct param *params;

int number,

!
switch (number) {

case -1: (void)prinff("Welcome to the Dog menu"); break;

YAMM PROGRAMMER'S GUIDE A-15

case0: (void)printf("Nameof dog; the defaultis Rover"); break;
case1: (void)printf("Favoritefoods"); break;
case2: (void)printf("Eye color"); break;
case3: (void)printf("Is your dog licensed?");break;
case4:

(void)printf("Do its earsperkup wheneverit hearsa VW?");
break;

This is somewhatmorecomplicatedthan thepreviousfunction. Parameter
2, andparameters3 and4 aremutuallyexclusive. (If a bird hasits
wingsclipped, it cannotfly; if it canfly, its wingsarenot clipped.)
This is enforcedby chk_bird0. Also, if parameter3 is specified,then
parameter4 must be, andvice versa;hence,they arespecifiedas
belongingto group0 insteadof NOGRP. This is enforcedby the getpar
routine. The first parameterillustratestheuseof legal-value
sets. Finally, if the third nameis selected,the programdynamically
createsanothersimilar menubelow thecurrentone and goesinto it.
This one containsno informationoption.
... _J

bird()

{
int clipped=0,dist,chk_bird0,help_bird0;

float height;

static char name[25];

static int first time = 1;

char units[20_,

struct param params[5];

static char *poss_values[] = {"rover","king","ohnooo!"};

static char *newconfig[] = {
"MENU mainmenu","Two Legs/twolegs","Four Legs/fourlegs","END",

"MENU twolegs","Cockatielldog"," Parakeet/dog","Pigeort/dog","END",

"MENU fourlegs","Alsatian/bird","Collie/bird","German Shepherd/bird",

"END","/keep last"

);
if (first_time) {

(void)strcpy(name,"king");

first time = 0;

}
(void)def(params,0,"Pet' s name",STRING,name,WlD,20,LINE,2,REQ,ENUM,3,

(unsigned char *)poss_values,DEFAULT,END);

(void)def(params, 1,"Height (fractional inches)",FLOAT,&height, WID,6,

LINE,4,COL,40,END);

(void)def(params,2,"Wings clipped?",B OOL,&clipped,LINE,4,DEFAULT,END);

(void)def(params,3,"Maximum flying distance (integer)",INT,&dist,WlD,4,

A-16 Appendix A

LINE,8,GROUP,0,END);

(void)def(params,4,"Units",STRING,units,WlD,10,LINE,8,COL,40,GROUP,0,

END);

if (getpar(params,5,chk_bird,help_bird) == - 1) return;

if (strcmp(name,"ohnooo!") == 0) {

(void)printf("Ohnooo!");

(void)create_new_subtree((char *)NULL,newconfig,func_table,
(int (*)0)NULL,(int (*)())NULL);

}
else (void)printfCWhat kind of name is

/* continue with rest of program here - there isn't any in these examples */
}

f* ...

Note in this function the handling at cases 2 through 4. If parameter 2

becomes true (wings clipped), specified values for parameters 3 and 4 are

removed. Similarly, if parameter 3 or 4 is given a value, then parameter

2 is cleared. This is done using unspecify, which removes the value for

the specified parameter, and new_value, which tells the menu package that

the error routine has changed a value and it should be redisplayed.
... */

/*ARGSUSED*/

chk_bird(params,number,value)

struct param *params;

int number,

union {int i; double f; char *s;) value;

{
int error,i,pr_msg;

char locbuf[30];

switch (number) {

case 0: error = alphawhite(value.s); break;
case 1:

error = (value.f<2. Ivalue.f>15.? -1:0);

if (error == - 1)

(void)printf("Birds must be between 2 and 15 inches tall.");
break;

case 2:

error = 0;

prmsg = 0;

if (value.i && !unspecified(3)) {

(void)unspecify(params,3);

pr_msg= 1;

I
if (value.i && !unspecified(4)) {

(void)unspecify(params,4);

prmsg= 1;
)

YAMM PROGRAMMER'S GUIDE A-17

if (prmsg)

(void)printf("Changing flying distance to be undefined.");

break;

case 3:

error = (value.i<0? - 1:0);

if (error == 0 && tunspecified(2) && *((int *)params[2].value)) {

*((int *)params[2].value) = 0;/* or clipped---0; */

(void)new_value(params,2);

(void)printf("Changing wings to

}
break;

case 4:

error = 0;

(void)strcpy(locbuf,value.s);

for (i=0;i<strlen(locbut);i++)

if (isupper(locbuf[i])) locbufli]+=32;

if (strcmp(locbuf,"inches")!=0 && strcmp(locbuf,"feet")t=0 &&

strcmp(locbuf,"yards")! --0 && strcmp(locbuf,"miles")! =0)

error = -1;

if (error == -1)

(void)printf("Please use inches, feet, yards, or miles.");

else if (lunspecified(2) && *((int *)params[2].value)) {

*((int *)params[2].value) = 0;/* or clipped=0; */

(void)new_value(params,2);

(void)prinff("Changing wings to

}
break;

default: error = 0; break;

}
return(error);

/*ARGSUSED*/

help_bird(params,number)

struct param *params;

int number;,

{
switch (number) {

case 0: (void)printf("Name of bird."); break;

case 1: (void)printf("Height, between 2 and 15 inches"); break;

case 2: (void)printf("Are wings clipped?"); break;
case 3:

(void)printf("Maximum flying distance. ");

(void)printf("If this is specified, distance units must also ");

(void)printf("be specified and vice versa.");

break;

case 4:

A- 18 Appendix A

(void)printf("Distanceunits. ");
(void)printf("If this is specified,maximumflying distance");
(void)printf("must also bespecifiedandvice versa.");
break;

_t ...

Error checking routines:

alphawhite(buf) returns 0 iff buf is only letters and white space

color(buD returns 0 iff buf is a valid color

alphawhite(buf)

char *buf;

{
int i;

for (i=0;i<strlen(buf);i++)

if (!isalpha(buf[i]) && !isspace(buf[i])) return(- 1);

return(0);

)

color(butt

char *buf;

{
int i;

char locbuf[30];

(void)strcpy(locbuf, butt;

for (i=0;i<strlen(locbutt;i++) if (isupper(locbuf[i])) locbuf[i]+=32;

if (strcmp(locbuf,"brown")=--0 1strcmp(locbuf,"blue")==0 I

strcmp(locbuf,"green")=--0 1strcmp(locbuf,"gray")==0) return(0);

else return(- 1);

6. INTERNALS

There are a few internal issues that a programmer should be aware of.

Yamm changes the handling of stdout and stderr in order that program

output can be intercepted and properly placed in the menu windows. In the

unlikely event of a bug in the output handling routines, traces and other output

statements might not function correctly. To bypass this processing, the file

pointer mm_termfp may be referenced using extern; this pointer directly
accesses the screen.

Also, Yamm starts up a subprocess (menuwatch) and allocates a sema-

phore in order to properly handle application I/O. Otherwise application I/O

YAMM PROGRAMMER'S GUIDE A-19

would be limited to 4096bytes(the sizeof the bufferedI/O buffer) and flushed
only on applicationcompletion. The subprocesswaits for application I/O and
then signalsYamm to print it in the properplace. Normally, when an applica-
tion dies, the subprocesswill also die, freeing the semaphorein the process.
However, if the subprocessis killed, the semaphoremay not get removed;
when enough semaphoresbuild up, Yamm will not start properly. To avoid
this, the usershouldneverkill the subprocessexplicitly. If semaphoresareleft
around,ipcrm(1) may be used to remove them.

In order to dump the screen, Yamm creates a temporary file in the user's

current directory and then attempts to troff this file using the pipeline tbl Iptroff

-ms. If this succeeds, the file is then deleted; otherwise the file remains. The

user may specify an alternative command (or no command) by setting the

environment variable MENU HARDCOPY CMD. For example, the command

setenv MENU HARDCOPY CMD 'tbl %s-I ptroff -ms' would print hardcopies

without deleting the originals. The names of temporary files are determined by

the day and time of the screen dump; e.g., menupic1091252 was dumped Mon-

day (1), at time 9:12:52.

